May  2011, 5(2): 191-198. doi: 10.3934/amc.2011.5.191

Some connections between self-dual codes, combinatorial designs and secret sharing schemes

1. 

Department of Mathematics and Informatics, Veliko Tarnovo University, Bulgaria, Bulgaria

Received  March 2010 Revised  July 2010 Published  May 2011

In the present work we study a class of singly-even self-dual codes with the special property that the minimum weight of their shadow is 1. Some of these codes support 1 and 2-designs. Using them, we describe two types of schemes based on codes, the first is an one-part secret sharing scheme and the second is a two-part sharing scheme. Similar schemes can be constructed from self-dual codes that support 3-designs.
Citation: Stefka Bouyuklieva, Zlatko Varbanov. Some connections between self-dual codes, combinatorial designs and secret sharing schemes. Advances in Mathematics of Communications, 2011, 5 (2) : 191-198. doi: 10.3934/amc.2011.5.191
References:
[1]

E. F. Assmus and H. F. Mattson, New $5$-designs,, J. Combin. Theory, 6 (1969), 122. doi: 10.1016/S0021-9800(69)80115-8. Google Scholar

[2]

S. Bouyuklieva and M. Harada, Extremal self-dual $[50,25,10]$ codes with automorphisms of order $3$ and quasi-symmetric $2-(49,9,6)$ designs,, Des. Codes Crypt., 28 (2003), 163. doi: 10.1023/A:1022588407585. Google Scholar

[3]

J. H. Conway and N. J. A. Sloane, A new upper bound on the minimal distance of self-dual codes,, IEEE Trans. Inform. Theory, 36 (1990), 1319. doi: 10.1109/18.59931. Google Scholar

[4]

S. T. Dougherty, S. Mesnager and P. Solé, Secret-sharing schemes based on self-dual codes,, in, (2008), 338. Google Scholar

[5]

W.C. Huffman, On the classification and enumeration of self-dual codes,, Finite Fields Appl., 11 (2005), 451. doi: 10.1016/j.ffa.2005.05.012. Google Scholar

[6]

W. C. Huffman and V. Pless, "Fundamentals of Error-Correcting Codes,'', Cambridge Univ. Press, (2003). Google Scholar

[7]

J. L. Massey, Some applications of coding theory in cryptography,, in, (1995), 33. Google Scholar

[8]

E. M. Rains, Shadow bounds for self-dual-codes,, IEEE Trans. Inform. Theory, 44 (1998), 134. doi: 10.1109/18.651000. Google Scholar

show all references

References:
[1]

E. F. Assmus and H. F. Mattson, New $5$-designs,, J. Combin. Theory, 6 (1969), 122. doi: 10.1016/S0021-9800(69)80115-8. Google Scholar

[2]

S. Bouyuklieva and M. Harada, Extremal self-dual $[50,25,10]$ codes with automorphisms of order $3$ and quasi-symmetric $2-(49,9,6)$ designs,, Des. Codes Crypt., 28 (2003), 163. doi: 10.1023/A:1022588407585. Google Scholar

[3]

J. H. Conway and N. J. A. Sloane, A new upper bound on the minimal distance of self-dual codes,, IEEE Trans. Inform. Theory, 36 (1990), 1319. doi: 10.1109/18.59931. Google Scholar

[4]

S. T. Dougherty, S. Mesnager and P. Solé, Secret-sharing schemes based on self-dual codes,, in, (2008), 338. Google Scholar

[5]

W.C. Huffman, On the classification and enumeration of self-dual codes,, Finite Fields Appl., 11 (2005), 451. doi: 10.1016/j.ffa.2005.05.012. Google Scholar

[6]

W. C. Huffman and V. Pless, "Fundamentals of Error-Correcting Codes,'', Cambridge Univ. Press, (2003). Google Scholar

[7]

J. L. Massey, Some applications of coding theory in cryptography,, in, (1995), 33. Google Scholar

[8]

E. M. Rains, Shadow bounds for self-dual-codes,, IEEE Trans. Inform. Theory, 44 (1998), 134. doi: 10.1109/18.651000. Google Scholar

[1]

Gabriele Nebe, Wolfgang Willems. On self-dual MRD codes. Advances in Mathematics of Communications, 2016, 10 (3) : 633-642. doi: 10.3934/amc.2016031

[2]

Masaaki Harada, Akihiro Munemasa. Classification of self-dual codes of length 36. Advances in Mathematics of Communications, 2012, 6 (2) : 229-235. doi: 10.3934/amc.2012.6.229

[3]

Stefka Bouyuklieva, Anton Malevich, Wolfgang Willems. On the performance of binary extremal self-dual codes. Advances in Mathematics of Communications, 2011, 5 (2) : 267-274. doi: 10.3934/amc.2011.5.267

[4]

Nikolay Yankov, Damyan Anev, Müberra Gürel. Self-dual codes with an automorphism of order 13. Advances in Mathematics of Communications, 2017, 11 (3) : 635-645. doi: 10.3934/amc.2017047

[5]

Steven T. Dougherty, Cristina Fernández-Córdoba, Roger Ten-Valls, Bahattin Yildiz. Quaternary group ring codes: Ranks, kernels and self-dual codes. Advances in Mathematics of Communications, 2019, 0 (0) : 0-0. doi: 10.3934/amc.2020023

[6]

Steven T. Dougherty, Joe Gildea, Abidin Kaya, Bahattin Yildiz. New self-dual and formally self-dual codes from group ring constructions. Advances in Mathematics of Communications, 2020, 14 (1) : 11-22. doi: 10.3934/amc.2020002

[7]

Masaaki Harada, Akihiro Munemasa. On the covering radii of extremal doubly even self-dual codes. Advances in Mathematics of Communications, 2007, 1 (2) : 251-256. doi: 10.3934/amc.2007.1.251

[8]

Stefka Bouyuklieva, Iliya Bouyukliev. Classification of the extremal formally self-dual even codes of length 30. Advances in Mathematics of Communications, 2010, 4 (3) : 433-439. doi: 10.3934/amc.2010.4.433

[9]

Hyun Jin Kim, Heisook Lee, June Bok Lee, Yoonjin Lee. Construction of self-dual codes with an automorphism of order $p$. Advances in Mathematics of Communications, 2011, 5 (1) : 23-36. doi: 10.3934/amc.2011.5.23

[10]

Bram van Asch, Frans Martens. Lee weight enumerators of self-dual codes and theta functions. Advances in Mathematics of Communications, 2008, 2 (4) : 393-402. doi: 10.3934/amc.2008.2.393

[11]

Bram van Asch, Frans Martens. A note on the minimum Lee distance of certain self-dual modular codes. Advances in Mathematics of Communications, 2012, 6 (1) : 65-68. doi: 10.3934/amc.2012.6.65

[12]

Masaaki Harada, Katsushi Waki. New extremal formally self-dual even codes of length 30. Advances in Mathematics of Communications, 2009, 3 (4) : 311-316. doi: 10.3934/amc.2009.3.311

[13]

Katherine Morrison. An enumeration of the equivalence classes of self-dual matrix codes. Advances in Mathematics of Communications, 2015, 9 (4) : 415-436. doi: 10.3934/amc.2015.9.415

[14]

Minjia Shi, Daitao Huang, Lin Sok, Patrick Solé. Double circulant self-dual and LCD codes over Galois rings. Advances in Mathematics of Communications, 2019, 13 (1) : 171-183. doi: 10.3934/amc.2019011

[15]

Suat Karadeniz, Bahattin Yildiz. New extremal binary self-dual codes of length $68$ from $R_2$-lifts of binary self-dual codes. Advances in Mathematics of Communications, 2013, 7 (2) : 219-229. doi: 10.3934/amc.2013.7.219

[16]

Bagher Bagherpour, Shahrooz Janbaz, Ali Zaghian. Optimal information ratio of secret sharing schemes on Dutch windmill graphs. Advances in Mathematics of Communications, 2019, 13 (1) : 89-99. doi: 10.3934/amc.2019005

[17]

Amita Sahni, Poonam Trama Sehgal. Enumeration of self-dual and self-orthogonal negacyclic codes over finite fields. Advances in Mathematics of Communications, 2015, 9 (4) : 437-447. doi: 10.3934/amc.2015.9.437

[18]

Steven T. Dougherty, Cristina Fernández-Córdoba. Codes over $\mathbb{Z}_{2^k}$, Gray map and self-dual codes. Advances in Mathematics of Communications, 2011, 5 (4) : 571-588. doi: 10.3934/amc.2011.5.571

[19]

Masaaki Harada. Note on the residue codes of self-dual $\mathbb{Z}_4$-codes having large minimum Lee weights. Advances in Mathematics of Communications, 2016, 10 (4) : 695-706. doi: 10.3934/amc.2016035

[20]

Delphine Boucher. Construction and number of self-dual skew codes over $\mathbb{F}_{p^2}$. Advances in Mathematics of Communications, 2016, 10 (4) : 765-795. doi: 10.3934/amc.2016040

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]