American Institute of Mathematical Sciences

May  2008, 2(2): 159-173. doi: 10.3934/amc.2008.2.159

A combinatorial interpretation of double base number system and some consequences

 1 Center for Information Security and Cryptography, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada, Canada

Received  September 2007 Revised  February 2008 Published  April 2008

In Signal Processing and Cryptography a non-standard number representation, called Double Base Number System (DBNS) has found many applications. This representation has many interesting and useful properties. In traditional number systems, there is one radix used to represent numbers. For example in decimal systems, numbers are expressed as sum of powers of 10. In DBNS numbers are represented as sum of product of powers of 2 radices. In the current article we present a scheme to represent numbers in double (and multi-) base format by combinatorial objects like graphs and diagraphs. The combinatorial representation leads to proof of some interesting results about the double and multibase representation of integers. These proofs are based on simple combinatorial arguments. In this article we have provided a graph theoretic proof of the recurrence relation satisfied by the number of double base representations of a given integer. The result has been further generalized to more than 2 bases. Also, we have uncovered some interesting properties of the sequence representing the number of double (multi-) base representation of a positive integer $n$. It is expected that the combinatorial representation can serve as a tool for a better understanding of the double (and multi-) base number systems and uncover some of the mysteries still associated with it.
Citation: Pradeep Kumar Mishra, Vassil Dimitrov. A combinatorial interpretation of double base number system and some consequences. Advances in Mathematics of Communications, 2008, 2 (2) : 159-173. doi: 10.3934/amc.2008.2.159
 [1] David Auger, Irène Charon, Iiro Honkala, Olivier Hudry, Antoine Lobstein. Edge number, minimum degree, maximum independent set, radius and diameter in twin-free graphs. Advances in Mathematics of Communications, 2009, 3 (1) : 97-114. doi: 10.3934/amc.2009.3.97 [2] Litao Guo, Bernard L. S. Lin. Vulnerability of super connected split graphs and bisplit graphs. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1179-1185. doi: 10.3934/dcdss.2019081 [3] Srimathy Srinivasan, Andrew Thangaraj. Codes on planar Tanner graphs. Advances in Mathematics of Communications, 2012, 6 (2) : 131-163. doi: 10.3934/amc.2012.6.131 [4] Cristina M. Ballantine. Ramanujan type graphs and bigraphs. Conference Publications, 2003, 2003 (Special) : 78-82. doi: 10.3934/proc.2003.2003.78 [5] Daniele D'angeli, Alfredo Donno, Michel Matter, Tatiana Nagnibeda. Schreier graphs of the Basilica group. Journal of Modern Dynamics, 2010, 4 (1) : 167-205. doi: 10.3934/jmd.2010.4.167 [6] Yong Lin, Gábor Lippner, Dan Mangoubi, Shing-Tung Yau. Nodal geometry of graphs on surfaces. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1291-1298. doi: 10.3934/dcds.2010.28.1291 [7] Dina Ghinelli, Jennifer D. Key. Codes from incidence matrices and line graphs of Paley graphs. Advances in Mathematics of Communications, 2011, 5 (1) : 93-108. doi: 10.3934/amc.2011.5.93 [8] Renato Iturriaga, Héctor Sánchez Morgado. The Lax-Oleinik semigroup on graphs. Networks & Heterogeneous Media, 2017, 12 (4) : 643-662. doi: 10.3934/nhm.2017026 [9] Thomas Zaslavsky. Quasigroup associativity and biased expansion graphs. Electronic Research Announcements, 2006, 12: 13-18. [10] Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907 [11] Fabio Camilli, Adriano Festa, Silvia Tozza. A discrete Hughes model for pedestrian flow on graphs. Networks & Heterogeneous Media, 2017, 12 (1) : 93-112. doi: 10.3934/nhm.2017004 [12] Luca Schenato, Sandro Zampieri. On rendezvous control with randomly switching communication graphs. Networks & Heterogeneous Media, 2007, 2 (4) : 627-646. doi: 10.3934/nhm.2007.2.627 [13] Joachim von Below, José A. Lubary. Isospectral infinite graphs and networks and infinite eigenvalue multiplicities. Networks & Heterogeneous Media, 2009, 4 (3) : 453-468. doi: 10.3934/nhm.2009.4.453 [14] Jeremias Epperlein, Stefan Siegmund. Phase-locked trajectories for dynamical systems on graphs. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1827-1844. doi: 10.3934/dcdsb.2013.18.1827 [15] Bruno Colbois, Alexandre Girouard. The spectral gap of graphs and Steklov eigenvalues on surfaces. Electronic Research Announcements, 2014, 21: 19-27. doi: 10.3934/era.2014.21.19 [16] Shui-Nee Chow, Wuchen Li, Haomin Zhou. Entropy dissipation of Fokker-Planck equations on graphs. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 4929-4950. doi: 10.3934/dcds.2018215 [17] Enrico Capobianco. Born to be big: Data, graphs, and their entangled complexity. Big Data & Information Analytics, 2016, 1 (2&3) : 163-169. doi: 10.3934/bdia.2016002 [18] Rinaldo M. Colombo, Mauro Garavello. Stability and optimization in structured population models on graphs. Mathematical Biosciences & Engineering, 2015, 12 (2) : 311-335. doi: 10.3934/mbe.2015.12.311 [19] Robert Carlson. Dirichlet to Neumann maps for infinite quantum graphs. Networks & Heterogeneous Media, 2012, 7 (3) : 483-501. doi: 10.3934/nhm.2012.7.483 [20] M. DeDeo, M. Martínez, A. Medrano, M. Minei, H. Stark, A. Terras. Spectra of Heisenberg graphs over finite rings. Conference Publications, 2003, 2003 (Special) : 213-222. doi: 10.3934/proc.2003.2003.213

2018 Impact Factor: 0.879