DCDS
The local $C^1$-density of stable ergodicity
Yunhua Zhou
In this paper, we prove that stable ergodicity is $C^1$-dense among conservative partially hyperbolic systems which, in a stable way, have two ergodic measures such that one has all center Lyapunov exponents non-negative and the other one has all center Lyapunov exponents non-positive.
keywords: blender. Lyapunov exponents stable ergodicity Partial hyperbolicity
DCDS
On the limit quasi-shadowing property
Fang Zhang Yunhua Zhou

In this paper, we study the limit quasi-shadowing property for diffeomorphisms. We prove that any quasi-partially hyperbolic pseudoorbit $\{x_{i},n_{i}\}_{i∈ \mathbb{Z}}$ can be $\mathcal{L}^p$-, limit and asymptotic quasi-shadowed by a points sequence $\{y_{k}\}_{k∈ \mathbb{Z}}$. We also investigate the $\mathcal{L}^p$-, limit and asymptotic quasi-shadowing properties for partially hyperbolic diffeomorphisms which are dynamically coherent.

keywords: limit quasi-shadowing quasi-partially hyperbolic pseudoorbit partial hyperbolicity dynamical coherence

Year of publication

Related Authors

Related Keywords

[Back to Top]