JIMO
On the global optimal solution for linear quadratic problems of switched system
Jin Feng He Wei Xu Zhi Guo Feng Xinsong Yang

The global optimal solution for the optimal switching problem is considered in discrete time, where these subsystems are linear and the cost functional is quadratic. The optimal switching problem is a discrete optimization problem. Complete enumeration search is always required to find the global optimal solution, which is very expensive. Relaxation method is an effective method to transform the discrete optimization problem into the continuous optimization problem, while the optimal solution is always not the feasible solution of the discrete optimization problem. In this paper, we propose a special class of relaxation method to transform the optimal switching problem into a relaxed optimization problem. We prove that the optimal solution of this modified relaxed optimization problem is exactly that of the optimal switching problem. Then, the global optimal solution can be obtained by solving the continuous optimization problem easily. Numerical examples are demonstrated to show that the modified relaxation method is efficient and effective to obtain the global optimal solution.

keywords: Global optimal solution optimal switching problem switching sequence relaxation method
DCDS-B
Finite-time synchronization of competitive neural networks with mixed delays
Tingting Su Xinsong Yang
In this paper, finite-time synchronization of competitive neural networks (CNNs) with bounded time-varying discrete and distributed delays (mixed delays) is investigated. A simple controller is added to response (slave) system such that it can be synchronized with the driving (master) CNN in a setting time. By introducing a suitable Lyapunov-Krasovskii's functional and utilizing some inequalities, several sufficient conditions are obtained to ensure the control object. Moreover, the setting time is explicitly given. Different from previous results, the setting is related to both the initial value of error system and the time delays. Finally, numerical examples are given to show the effectiveness of the theoretical results.
keywords: Finite-time mixed delays synchronization competitive neural networks control.

Year of publication

Related Authors

Related Keywords

[Back to Top]