## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

$\label{IntroEq0-2}\begin{cases}u_{t}=Δ{u}-χ\nabla·(u\nabla{v})+u(1-u),{x}∈\mathbb{R}^N,\\{0}=Δ{v}-v+u,{x}∈\mathbb{R}^N,\end{cases}$ |

$\mathop {\lim }\limits_{t \to \infty } \mathop {\sup }\limits_{|x| \le ct} [|u(x,t;{u_0}) - 1| + |v(x,t;{u_0}) - 1|] = 0\quad \forall {\mkern 1mu} {\mkern 1mu} 0 < c < c_ - ^*(\chi )$ |

$\mathop {\lim }\limits_{t \to \infty } \mathop {\sup }\limits_{|x| \le ct} [u(x,t;{u_0}) + v(x,t;{u_0})] = 0\quad \forall {\mkern 1mu} {\mkern 1mu} c > c_ + ^*(\chi ).$ |

$\mathop {\lim }\limits_{\chi \to 0} {c^*}(\chi ) = \mathop {\lim }\limits_{\chi \to 0} c_ + ^*(\chi ) = \mathop {\lim }\limits_{\chi \to 0} c_ - ^*(\chi ) = 2.$ |

The current paper is devoted to the study of spreading speeds and transition fronts of lattice KPP equations in time heterogeneous media. We first prove the existence, uniqueness, and stability of spatially homogeneous entire positive solutions. Next, we establish lower and upper bounds of the (generalized) spreading speed intervals. Then, by constructing appropriate sub-solutions and super-solutions, we show the existence and continuity of transition fronts with given front position functions. Also, we prove the existence of some kind of critical front.

The present paper is devoted to the study of transition fronts in nonlocal reaction-diffusion equations with time heterogeneous nonlinearity of ignition type. It is proven that such an equation admits space monotone transition fronts with finite speed and space regularity in the sense of uniform Lipschitz continuity. Our approach is first constructing a sequence of approximating front-like solutions and then proving that the approximating solutions converge to a transition front. We take advantage of the idea of modified interface location, which allows us to characterize the finite speed of approximating solutions in the absence of space regularity, and leads directly to uniform exponential decaying estimates.

In this paper, we study the spectral theory for nonlocal dispersal operators with time periodic indefinite weight functions subject to Dirichlet type, Neumann type and spatial periodic type boundary conditions. We first obtain necessary and sufficient conditions for the existence of a unique positive principal spectrum point for such operators. We then investigate upper bounds of principal spectrum points and sufficient conditions for the principal spectrum points to be principal eigenvalues. Finally we discuss the applications to nonlinear mathematical models from biology.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]