Entropy sets, weakly mixing sets and entropy capacity
François Blanchard Wen Huang
Discrete & Continuous Dynamical Systems - A 2008, 20(2): 275-311 doi: 10.3934/dcds.2008.20.275
Entropy sets are defined both topologically and for a measure. The set of topological entropy sets is the union of the sets of entropy sets for all invariant measures. For a topological system $(X,T)$ and an invariant measure $\mu$ on $(X,T)$, let $H(X,T)$ (resp. $H^\mu(X,T)$) be the closure of the set of all entropy sets (resp. $\mu$- entropy sets) in the hyperspace $2^X$. It is shown that if $h_{\text{top}}(T)>0$ (resp. $h_\mu(T)>0$), the subsystem $(H(X,T),\hat{T})$ (resp. $(H^\mu(X,T),\hat{T}))$ of $(2^X,\hat{T})$ has an invariant measure with full support and infinite topological entropy.
    Weakly mixing sets and partial mixing of dynamical systems are introduced and characterized. It is proved that if $h_{\text{top}}(T)>0$ (resp. $h_\mu(T)>0$) the set of all weakly mixing entropy sets (resp. $\mu$-entropy sets) is a dense $G_\delta$ in $H(X,T)$ (resp. $H^\mu(X,T)$). A Devaney chaotic but not partly mixing system is constructed.
     Concerning entropy capacities, it is shown that when $\mu$ is ergodic with $h_\mu(T)>0$, the set of all weakly mixing $\mu$-entropy sets $E$ such that the Bowen entropy $h(E)\ge h_\mu(T)$ is residual in $H^\mu(X,T)$. When in addition $(X,T)$ is uniquely ergodic the set of all weakly mixing entropy sets $E$ with $h(E)=h_{\text{top}}(T)$ is residual in $H(X,T)$.
keywords: partial mixing Entropy set entropy capacity.
The thermodynamic formalism for sub-additive potentials
Yongluo Cao De-Jun Feng Wen Huang
Discrete & Continuous Dynamical Systems - A 2008, 20(3): 639-657 doi: 10.3934/dcds.2008.20.639
The topological pressure is defined for sub-additive potentials via separated sets and open covers in general compact dynamical systems. A variational principle for the topological pressure is set up without any additional assumptions. The relations between different approaches in defining the topological pressure are discussed. The result will have some potential applications in the multifractal analysis of iterated function systems with overlaps, the distribution of Lyapunov exponents and the dimension theory in dynamical systems.
keywords: variational principle entropy topological pressure products of matrices. Thermodynamical formalism Lyapunov exponents

Year of publication

Related Authors

Related Keywords

[Back to Top]