A topological characterization of ω-limit sets for continuous flows on the projective plane
Víctor Jiménez López Gabriel Soler López
Please refer to Full Text.
On the relations between positive Lyapunov exponents, positive entropy, and sensitivity for interval maps
Alejo Barrio Blaya Víctor Jiménez López
Let $f:I=[0,1]\rightarrow I$ be a Borel measurable map and let $\mu$ be a probability measure on the Borel subsets of $I$. We consider three standard ways to cope with the idea of ``observable chaos'' for $f$ with respect to the measure $\mu$: $h_\mu(f)>0$ ---when $\mu$ is invariant---, $\mu(L^+(f))>0$ ---when $\mu$ is absolutely continuous with respect to the Lebesgue measure---, and $\mu(S^\mu(f))>0$. Here $h_\mu(f)$, $L^+(f)$ and $S^\mu(f)$ denote, respectively, the metric entropy of $f$, the set of points with positive Lyapunov exponent, and the set of sensitive points to initial conditions with respect to $\mu$.
    It is well known that if $h_\mu(f)>0$ or $\mu(L^+(f))>0$, then $\mu(S^\mu(f))>0$, and that (when $\mu$ is invariant and absolutely continuous) $h_\mu(f)>0$ and $\mu(L^+(f))>0$ are equivalent properties. However, the available proofs in the literature require substantially stronger hypotheses than those strictly necessary. In this paper we revisit these notions and show that the above-mentioned results remain true in, essentially, the most general (reasonable) settings. In particular, we improve some previous results from [2], [6], and [23].
keywords: Lyapunov exponents Absolutely continuous invariant measure acip Rohlin's formula metric entropy invariant measure sensitivity to initial conditions.

Year of publication

Related Authors

Related Keywords

[Back to Top]