## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- Electronic Research Announcements
- Conference Publications
- AIMS Mathematics

The model of brittle cracks in elastic solids at small strains is approximated by the Ambrosio-Tortorelli functional and then extended into evolution situation to an evolutionary system, involving viscoelasticity, inertia, heat transfer, and coupling with Cahn-Hilliard-type diffusion of a fluid due to Fick's or Darcy's laws. Damage resulting from the approximated crack model is considered rate independent. The fractional-step Crank-Nicolson-type time discretisation is devised to decouple the system in a way so that the energy is conserved even in the discrete scheme. The numerical stability of such a scheme is shown, and also convergence towards suitably defined weak solutions. Various generalizations involving plasticity, healing in damage, or phase transformation are mentioned, too.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]