## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

Asymptotic behaviour of the solutions to a basic virus dynamics model is discussed. We consider the population of uninfected cells, infected cells, and virus particles. Diffusion effect is incorporated there. First, the Lyapunov function effective to the spatially homogeneous part (ODE model without diffusion) admits the $L^1$ boundedness of the orbit. Then the pre-compactness of this orbit in the space of continuous functions is derived by the semigroup estimates. Consequently, from the invariant principle, if the basic reproductive number $R_0$ is less than or equal to 1, each orbit converges to the disease free spatially homogeneous equilibrium, and if $R_0>1$, each orbit converges to the infected spatially homogeneous equilibrium, which means that the simple diffusion does not affect the asymptotic behaviour of the solutions.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]