## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Foundations of Data Science
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

DCDS

Yakubovich, Fradkov, Hill and Proskurnikov have used the Yaku-bovich Frequency Theorem to prove that a strictly dissipative linear-quadratic control process with periodic coefficients admits a storage function, and various related results. We extend their analysis to the case when the coefficients are bounded uniformly continuous functions.

DCDS-S

Under the assumption of lack of uniform controllability for a family of time-dependent linear control systems, we study the dimension, topological structure and other dynamical properties of the sets of null controllable points and of the sets of reachable points. In particular, when the space of null controllable vectors has constant dimension for all the systems of the family, we find a closed invariant subbundle where the uniform null controllability holds. Finally, we associate a family of linear Hamiltonian systems to the control family and assume that it has an exponential dichotomy in order to relate the space of null controllable vectors to one of the Lagrange planes of the continuous hyperbolic splitting.

DCDS-S

Generally speaking, the term nonautonomous dynamics refers to the systematic use of dynamical tools to study the solutions of differential or difference equations with time-varying coefficients. The nature of the time variance may range from periodicity at one extreme, through Bohr almost periodicity, Birkhoff recurrence, Poisson recurrence etc. to stochasticity at the other extreme. The ``dynamical tools'' include almost everywhere Lyapunov exponents, exponential splittings, rotation numbers, and the theory of cocycles, but are by no means limited to these. Of course in practise one uses whatever ``works'' in the context of a given problem, so one usually finds dynamical methods used in conjunction with those of numerical analysis, spectral theory, the calculus of variations, and many other fields. The reader will find illustrations of this fact in all the papers of the present volume.

For more information please click the “Full Text” above.

For more information please click the “Full Text” above.

keywords:

DCDS

A detailed dynamical study of the skew-product semiflows induced by
families of AFDEs with infinite delay on a Banach space is
carried over. Applications are given for families of non-autonomous
quasimonotone reaction-diffusion PFDEs with delay in the nonlinear
reaction terms, both with finite and infinite delay. In this
monotone setting, relations among the classical concepts of sub and
super solutions and the dynamical concept of semi-equilibria are
established, and some results on the existence of minimal semiflows
with a particular dynamical structure are derived.

DCDS

We consider the skew-product semiflow induced by a family of
finite-delay functional differential equations and we characterize
the exponential stability of its minimal subsets. In the case of
non-autonomous systems modelling delayed cellular neural networks,
the existence of a global exponentially attracting solution is
deduced from the uniform asymptotical stability of the null
solution of an associated non-autonomous linear system.

DCDS

This paper deals with the study of principal Lyapunov exponents, principal Floquet subspaces, and exponential separation for positive random linear dynamical systems in ordered Banach spaces. The main contribution lies in the introduction of a new type of exponential separation, called of type Ⅱ, important for its application to random differential equations with delay. Under weakened assumptions, the existence of an exponential separation of type Ⅱ in an abstract general setting is shown, and an illustration of its application to dynamical systems generated by scalar linear random delay differential equations with finite delay is given.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]