DCDS
Divergent diagrams of folds and simultaneous conjugacy of involutions
Solange Mancini Miriam Manoel Marco Antonio Teixeira
In this work we show that the smooth classification of divergent diagrams of folds $(f_1, \ldots, f_s) : (\mathbb R^n,0) \to (\mathbb R^n \times \cdots \times \mathbb R^n,0)$ can be reduced to the classification of the $s$-tuples $(\varphi_1, \ldots, \varphi_s)$ of associated involutions. We apply the result to obtain normal forms when $s \leq n$ and $\{\varphi_1, \ldots, \varphi_s\}$ is a transversal set of linear involutions. A complete description is given when $s=2$ and $n\geq 2$. We also present a brief discussion on applications of our results to the study of discontinuous vector fields and discrete reversible dynamical systems.
keywords: singularities involution discontinuous vector fields reversible diffeomorphisms. Divergent diagram of folds normal form

Year of publication

Related Authors

Related Keywords

[Back to Top]