## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

IPI

In practical statistical inverse problems, one often considers only finite-dimensional unknowns and investigates numerically their posterior probabilities. As many unknowns are function-valued, it is of interest to know whether the estimated probabilities converge when the finite-dimensional approximations of the unknown are refined. In this work, the generalized Bayes formula is shown to be a powerful tool in the convergence studies. With the help of the generalized Bayes formula, the question of convergence of the posterior distributions is returned to the convergence of the finite-dimensional (or any other) approximations of the unknown. The approach allows many prior distributions while the restrictions are mainly for the noise model and the direct theory. Three modes of convergence of posterior distributions are considered -- weak convergence, setwise convergence and convergence in variation. The convergence of conditional mean estimates is also studied.

IPI

We propose a new class of Gaussian priors,

The prior distribution is constructed to be essentially independent of the discretization so that the a posteriori distribution will be essentially independent of the discretization grid. The covariance of a discrete correlation prior may be formed by combining the Fisher information of a discrete white noise and different-order difference priors. This is interpreted as a combination of virtual measurements of the unknown. Closed-form expressions for the continuous limits are calculated. Also, boundary correction terms for correlation priors on finite intervals are given.

A numerical example, deconvolution with a Gaussian kernel and a correlation prior, is computed.

*correlation priors*. In contrast to some well-known smoothness priors, they have stationary covariances. The correlation priors are given in a parametric form with two parameters: correlation power and correlation length. The first parameter is connected with our prior information on the variance of the unknown. The second parameter is our prior belief on how fast the correlation of the unknown approaches zero. Roughly speaking, the correlation length is the distance beyond which two points of the unknown may be considered independent.The prior distribution is constructed to be essentially independent of the discretization so that the a posteriori distribution will be essentially independent of the discretization grid. The covariance of a discrete correlation prior may be formed by combining the Fisher information of a discrete white noise and different-order difference priors. This is interpreted as a combination of virtual measurements of the unknown. Closed-form expressions for the continuous limits are calculated. Also, boundary correction terms for correlation priors on finite intervals are given.

A numerical example, deconvolution with a Gaussian kernel and a correlation prior, is computed.

IPI

One approach to noisy inverse problems is to use Bayesian methods. In this work, the statistical inverse problem of estimating the probability distribution of an infinite-dimensional unknown given its noisy indirect infinite-dimensional observation is studied in the Bayesian framework. The motivation for the work arises from the fact that the Bayesian computations are usually carried out in finite-dimensional cases, while the original inverse problem is often infinite-dimensional. A good understanding of an infinite-dimensional problem is, in general, helpful in finding efficient computational approaches to the problem.

The fundamental question of well-posedness of the infinite-dimensional statistical inverse problem is considered. In particular, it is shown that the continuous dependence of the posterior probabilities on the realizations of the observation provides a certain degree of uniqueness for the posterior distribution.

Special emphasis is on finding tools for working with non-Gaussian noise models. Especially, the applicability of the generalized Bayes formula is studied. Several examples of explicit posterior distributions are provided.

The fundamental question of well-posedness of the infinite-dimensional statistical inverse problem is considered. In particular, it is shown that the continuous dependence of the posterior probabilities on the realizations of the observation provides a certain degree of uniqueness for the posterior distribution.

Special emphasis is on finding tools for working with non-Gaussian noise models. Especially, the applicability of the generalized Bayes formula is studied. Several examples of explicit posterior distributions are provided.

IPI

We study flexible and proper smoothness priors for Bayesian
statistical inverse problems by using Whittle-Matérn Gaussian random fields.
We review earlier results on finite-difference approximations of certain Whittle-Matérn random field in $\mathbb{R}^2$. Then we derive finite-element method approximations and show that the
discrete approximations can be expressed as solutions of sparse
stochastic matrix equations.
Such equations are known to be computationally efficient and
useful in inverse problems with a large number of unknowns.

The presented construction of Whittle-Matérn correlation functions allows both isotropic or anisotropic priors with adjustable parameters in correlation length and variance. These parameters can be used, for example, to model spatially varying structural information of unknowns.

As numerical examples, we apply the developed priors to two-dimensional electrical impedance tomography problems.

The presented construction of Whittle-Matérn correlation functions allows both isotropic or anisotropic priors with adjustable parameters in correlation length and variance. These parameters can be used, for example, to model spatially varying structural information of unknowns.

As numerical examples, we apply the developed priors to two-dimensional electrical impedance tomography problems.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]