## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

JMD

We introduce a class of continuous maps $f$ of a compact topological space $I$ admitting inducing schemes and describe the tower constructions associated with them. We then establish a thermodynamic formalism, \ie describe a class of real-valued potential functions $\varphi$ on $I$, which admit a unique equilibrium measure $\mu_\varphi$ minimizing the free energy for a certain class of invariant measures. We also describe ergodic properties of equilibrium measures, including decay of correlation and the Central Limit Theorem. Our results apply to certain maps of the interval with critical points and/or singularities (including some unimodal and multimodal maps) and to potential functions $\varphi_t=-t\log|df|$ with $t\in(t_0, t_1)$ for some $t_0<1 < t_1$. In the particular case of $S$-unimodal maps we show that one can choose $t_0<0$ and that the class of measures under consideration consists of all invariant Borel probability measures.

keywords:
equilibrium
meassures
,
inducing schemes
,
liftability.
,
towers
,
Thermodynamic formalism

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]