## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- Electronic Research Announcements
- Conference Publications
- AIMS Mathematics

DCDS

We show that a structurally stable diffeomorphism has the inverse shadowingproperty with respect to classes of continuous methods. We also show thatany diffeomorphism belonging to the $C^1$-interior of the set of diffeomorphisms withthe above-mentioned property is structurally stable.

DCDS

Let Int$^1WS(M)$ be the $C^1$-interior of the set of diffeomorphisms of a smooth closed manifold $M$ having the weak shadowing property.
The second author has shown that if $\dim M = 2$ and all of the sources and sinks of a diffeomorphism $f \in$ Int$^1WS(M)$ are trivial, then $f$ is structurally stable.
In this paper, we show that there exist diffeomorphisms $f \in$ Int$^1WS(M)$, $\dim M = 2$, such that $(i)$ $f$ belongs to the $C^1$-interior of diffeomorphisms for which the $C^0$-transversality condition is not satisfied, $(ii)$ $f$ has a saddle connection.
These results are based on the following theorem: if the phase diagram of an $\Omega$-stable diffeomorphism $f$ of a manifold $M$ of arbitrary dimension does not contain chains of length $m > 3$, then $f$ has the weak shadowing property.

DCDS

We study weak and orbital shadowing properties of dynamical systems related
to the following approach: we look for exact trajectories lying in small
neighborhoods of approximate ones (or containing approximate ones in their
small neighborhoods) or for exact trajectories such that the Hausdorff
distances between their closures and closures of approximate trajectories
are small.

These properties are characterized for linear diffeomorphisms. We also study some $C^1$-open sets of diffeomorphisms defined in terms of these properties. It is shown that the $C^1$-interior of the set of diffeomorphisms having the orbital shadowing property coincides with the set of structurally stable diffeomorphisms.

These properties are characterized for linear diffeomorphisms. We also study some $C^1$-open sets of diffeomorphisms defined in terms of these properties. It is shown that the $C^1$-interior of the set of diffeomorphisms having the orbital shadowing property coincides with the set of structurally stable diffeomorphisms.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]