## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

ERA-MS

We compare on the one hand the combinatorial procedure described in [1] which gives a lower bound for the Newton polygon of the $L$-function attached to a commode, non-degenerate polynomial with coefficients in a finite field
and on the other hand the procedure which gives the Hodge theoretical spectrum at infinity of a polynomial with complex coefficients and with the same Newton polyhedron. The outcome is that they are essentially the same, thus providing a Hodge theoretical interpretation of the Adolphson-Sperber lower bound which was conjectured in [1].

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]