## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Foundations of Data Science
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

_{$_t\rightarrow \infty$}||$u$ || $\le C L^{\nu}$ from $\nu = \frac{11}{5}$ to $\nu=\frac{3}{2}$, and for the case of general initial data we establish an estimate of the above form with $\nu = \frac{13}{6}$. We also remove the restrictions on the magnitudes of the parameters in the model and track the dependence of our estimates on these parameters, assuming they are at least $O(1)$.

We study *heterogeneous* interactions in a time-continuous bounded confidence model for opinion formation. The key new modelling aspects are to distinguish between open-minded and closed-minded behaviour and to include an open-mindedness social norm. The investigations focus on the equilibria supported by the proposed new model; particular attention is given to a novel class of equilibria consisting of multiple *connected* opinion clusters, which does not occur in the absence of heterogeneity. Various rigorous stability results concerning these equilibria are established. We also incorporate the effect of media in the model and study its implications for opinion formation.

We consider an aggregation model with nonlinear diffusion in domains with boundaries and investigate the zero diffusion limit of its solutions. We establish the convergence of weak solutions for fixed times, as well as the convergence of energy minimizers in this limit. Numerical simulations that support the analytical results are presented. A second key scope of the numerical studies is to demonstrate that adding small nonlinear diffusion rectifies a flaw of the plain aggregation model in domains with boundaries, which is to evolve into unstable equilibria (non-minimizers of the energy).

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]