## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Foundations of Data Science
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

DCDS

Is a periodic orbit underlying a periodic pattern of spikes in a heterogeneous
neural network stable or unstable? We analytically assess this question
in neural networks with delayed interactions by explicitly studying
the microscopic time evolution of perturbations.
We show that in purely inhibitorily coupled networks of neurons with
normal dissipation (concave rise function), such as common leaky
integrate-and-fire neurons,

*all*orbits underlying non-degenerate periodic spike patterns are stable. In purely inhibitorily coupled networks with strongly connected topology and normal dissipation (strictly concave rise function), they are even asymptotically stable. In contrast, for the same type of individual neurons, all orbits underlying such patterns are unstable if the coupling is excitatory. For networks of neurons with anomalous dissipation ((strictly) convex rise function), the reverse statements hold. For the stable dynamics, we give an analytical lower bound on the local size of the basin of attraction. Numerical simulations of networks with different integrate-and-fire type neurons illustrate our results.## Year of publication

## Related Authors

## Related Keywords

[Back to Top]