## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

DCDS-B

We study the Perron-Frobenius operator $\mathcal{P}$ of closed dynamical systems and certain open dynamical systems. We prove that the presence of a large positive eigenvalue $\rho$ of $\mathcal{P}$ guarantees the existence of a 2-partition of the phase space for which the escape rates of the open systems defined on the two partition sets are both slower than $-\log\rho$. The open systems with slow escape rates are easily identified from the Perron-Frobenius operators of the closed systems. Numerical results are presented for expanding maps of the unit interval. We also apply our technique to shifts of finite type to show that if the adjacency matrix for the shift has a large positive second eigenvalue, then the shift may be decomposed into two disjoint subshifts, both of which have high topological entropies.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]