## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- Electronic Research Announcements
- Conference Publications
- AIMS Mathematics

$\frac{h_{\mu\circ \pi^{-1}}(S)}{\int \psi\circ\pi\d\mu}+ \frac{h_\mu(T)-h_{\mu\circ \pi^{-1}}(S)}{\int \varphi\d\mu}$

over all $T$-invariant Borel probability measures $\mu$ on $X$ is attained on the subset
of ergodic measures. Here $h_\mu(T)$ stands for the metric entropy of $T$ with respect to $\mu$.
As an application, we prove the existence of an ergodic invariant measure with full dimension for
a class of transformations treated in [11], and also for the transformations treated in
[17], where the author considers nonlinear skew-product perturbations of
*general Sierpinski carpets*. In order to do so we establish a variational principle for the
topological pressure of certain noncompact sets.

We give a subclass $\mathcal{L}$ of *Non-linear Lalley-Gatzouras carpets* and an open set $\mathcal{U}$ in $\mathcal{L}$ such that any carpet in $\mathcal{U}$ has a unique ergodic measure of full dimension. In particular, any Lalley-Gatzouras carpet which is close to a *non-trivial* general Sierpinski carpet has a unique ergodic measure of full dimension.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]