## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Foundations of Data Science
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

*p*-Laplacian differential operator, with a nonlinearity concave near the origin and a nonlinear perturbation of it. We look for multiple positive solutions. We consider two distinct cases. One when the perturbation is

*p*-linear and resonant with respect to $\lambda_1 > 0$ (the principal eigenvalue of (-$\Delta_p,W_0^(1,p)(Z)$)) at infinity and the other when the perturbation is

*p*-superlinear at infinity. In both cases we obtain two positive smooth solutions. The approach is variational, coupled with the method of upper-lower solutions and with suitable truncation techniques.

We study the existence of positive solutions for perturbations of the classical eigenvalue problem for the Dirichlet $p-$Laplacian. We consider three cases. In the first the perturbation is $(p-1)-$sublinear near $+\infty$, while in the second the perturbation is $(p-1)-$superlinear near $+\infty$ and in the third we do not require asymptotic condition at $+\infty$. Using variational methods together with truncation and comparison techniques, we show that for $\lambda\in (0, \widehat{\lambda}_1)$ -$\lambda>0$ is the parameter and $\widehat{\lambda}_1$ being the principal eigenvalue of $\left(-\Delta_p, W^{1, p}_0(\Omega)\right)$ -we have positive solutions, while for $\lambda\geq \widehat{\lambda}_1$, no positive solutions exist. In the "sublinear case" the positive solution is unique under a suitable monotonicity condition, while in the "superlinear case" we produce the existence of a smallest positive solution. Finally, we point out an existence result of a positive solution without requiring asymptotic condition at $+\infty$, provided that the perturbation is damped by a parameter.

We consider evolution inclusions driven by a time dependent subdifferential plus a multivalued perturbation. We look for periodic solutions. We prove existence results for the convex problem (convex valued perturbation), for the nonconvex problem (nonconvex valued perturbation) and for extremal trajectories (solutions passing from the extreme points of the multivalued perturbation). We also prove a strong relaxation theorem showing that each solution of the convex problem can be approximated in the supremum norm by extremal solutions. Finally we present some examples illustrating these results.

We study a semilinear Robin problem driven by the Laplacian plus an indefinite and unbounded potential term. The nonlinearity $f(x, s)$ is a Carathéodory function which is asymptotically linear as $ s\to ± ∞$ and resonant. In fact we assume double resonance with respect to any nonprincipal, nonnegative spectral interval $ \left[ \hat{λ}_k, \hat{λ}_{k+1}\right]$. Applying variational tools along with suitable truncation and perturbation techniques as well as Morse theory, we show that the problem has at least three nontrivial smooth solutions, two of constant sign.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]