## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Foundations of Data Science
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

Non-local reaction-diffusion equations arise naturally to account for diffusions involving jumps rather than local diffusions related to Brownian motion. In ecology, long distance dispersal require such frameworks. In this work we study a one-dimensional non-local reaction-diffusion equation with bistable type reaction. The heterogeneity here is due to a gap, some finite region where there is decay. Outside this gap region the equation is a classical homogeneous (space independent) non-local reaction-diffusion equation. This type of problem is motivated by applications in ecology, sociology, and physiology. We first establish the existence of a *generalized traveling front* that approaches a traveling wave solution as *t*-∞, propagating in a heterogeneous environment. We then study the problem of obstruction of solutions. In particular, we study the propagation properties of the generalized traveling front with significant use of the work of Bates, Fife, Ren and Wang in [

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]