## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

The quantization scheme in probability theory deals with finding a best approximation of a given probability distribution by a probability distribution that is supported on finitely many points. Let $P$ be a Borel probability measure on $\mathbb R$ such that $P = \frac 12 P\circ S_1^{-1}+\frac 12 P\circ S_2^{-1},$ where $S_1$ and $S_2$ are two contractive similarity mappings given by $S_1(x) = rx$ and $S_2(x) = rx+1-r$ for $0<r<\frac 12$ and $x∈ \mathbb R$. Then, $P$ is supported on the Cantor set generated by $S_1$ and $S_2$. The case $r = \frac 13$ was treated by Graf and Luschgy who gave an exact formula for the unique optimal quantization of the Cantor distribution $P$ (Math. Nachr., 183 (1997), 113-133). In this paper, we compute the precise range of $r$-values to which Graf-Luschgy formula extends.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]