## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Foundations of Data Science
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

In this paper, we investigate a backward problem for a fractional abstract evolution equation for which we wants to extract the initial distribution from the observation data provided along the final time $t = T.$ This problem is well-known to be ill-posed due to the rapid decay of the forward process. We consider a final value problem for fractional evolution process with respect to time. For this ill-posed problem, we construct two regularized solutions using quasi-reversibility method and quasi-boundary value method. The well-posedness of the regularized solutions as well as the convergence property is analyzed. The advantage of the proposed methods is that the regularized solution is given analytically and therefore is easy to be implemented. A numerical example is presented to show the validity of the proposed methods.

In this paper, we study a final value problem for a reaction-diffusion system with time and space dependent diffusion coefficients. In general, the inverse problem of identifying the initial data is not well-posed, and herein the Hadamard-instability occurs. Applying a new version of a modified quasi-reversibility method, we propose a stable approximate (regularized) problem. The existence, uniqueness and stability of the corresponding regularized problem are obtained. Furthermore, we also investigate the error estimate and show that the approximate solution converges to the exact solution in $L_2$ and $\stackrel{0}{H_1}$ norms. Our method can be applied to some concrete models that arise in biology, chemical engineering, etc.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]