## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Foundations of Data Science
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

This paper introduces the study of occurrence of symmetries in binary differential equations (BDEs). These are implicit differential equations given by the zeros of a quadratic 1-form, $ a(x,y)dy^2 + b(x,y)dxdy + c(x,y)dx^2 = 0, $ for $ a, b, c $ smooth real functions defined on an open set of $ \mathbb{R}^2 $. Generically, solutions of a BDE are given as leaves of a pair of foliations, and the action of a symmetry must depend not only whether it preserves or inverts the plane orientation, but also whether it preserves or interchanges the foliations. The first main result reveals this dependence, which is given algebraically by a formula relating three group homomorphisms defined on the symmetry group of the BDE. The second main result adapts methods from invariant theory of compact Lie groups to obtain an algorithm to compute general expressions of equivariant quadratic 1-forms under each compact subgroup of the orthogonal group $ {{\bf{O}}(2)} $.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]