CPAA
Gevrey regularity and existence of Navier-Stokes-Nernst-Planck-Poisson system in critical Besov spaces
Minghua Yang Jinyi Sun
The paper deals with the Cauchy problem of Navier-Stokes-Nernst-Planck-Poisson system (NSNPP). First of all, based on so-called Gevrey regularity estimates, which is motivated by the works of Foias and Temam [J. Funct. Anal., 87 (1989), 359-369], we prove that the solutions are analytic in a Gevrey class of functions. As a consequence of Gevrey estimates, we particularly obtain higher-order derivatives of solutions in Besov and Lebesgue spaces. Finally, we prove that there exists a positive constant
$\mathbb{C}$
such that if the initial data
$(u_{0}, n_{0}, c_{0})=(u_{0}^{h}, u_{0}^{3}, n_{0}, c_{0})$
satisfies
$\begin{aligned}&\|(n_{0}, c_{0},u_{0}^{h})\|_{\dot{B}^{-2+3/q}_{q, 1}× \dot{B}^{-2+3/q}_{q, 1}×\dot{B}^{-1+3/p}_{p, 1}}+\|u_{0}^{h}\|_{\dot{B}^{-1+3/p}_{p, 1}}^{α}\|u_{0}^{3}\|_{\dot{B}^{-1+3/p}_{p, 1}}^{1-α}≤q1/\mathbb{C}\end{aligned}$
for
$p, q, α$
with
$1<p<q≤ 2p<\infty, \frac{1}{p}+\frac{1}{q}>\frac{1}{3}, 1< q<6, \frac{1}{p}-\frac{1}{q}≤\frac{1}{3}$
, then global existence of solutions with large initial vertical velocity component is established.
keywords: Nernst-Planck-Poisson system Navier-Stokes system Gevrey regularity global solutions Besov spaces

Year of publication

Related Authors

Related Keywords

[Back to Top]