DCDS
From log Sobolev to Talagrand: A quick proof
Nicola Gigli Michel Ledoux
We provide yet another proof of the Otto-Villani theorem from the log Sobolev inequality to the Talagrand transportation cost inequality valid in arbitrary metric measure spaces. The argument relies on the recent development [2] identifying gradient flows in Hilbert space and in Wassertein space, emphasizing one key step as precisely the root of the Otto-Villani theorem. The approach does not require the doubling property or the validity of the local Poincaré inequality.
keywords: log-Sobolev inequality Talagrand inequality. Metric measure spaces
DCDS
Quantitative logarithmic Sobolev inequalities and stability estimates
Max Fathi Emanuel Indrei Michel Ledoux
We establish an improved form of the classical logarithmic Sobolev inequality for the Gaussian measure restricted to probability densities which satisfy a Poincaré inequality. The result implies a lower bound on the deficit in terms of the quadratic Kantorovich-Wasserstein distance. We similarly investigate the deficit in the Talagrand quadratic transportation cost inequality this time by means of an ${ L}^1$-Kantorovich-Wasserstein distance, optimal for product measures, and deduce a lower bound on the deficit in the logarithmic Sobolev inequality in terms of this metric. Applications are given in the context of the Bakry-Émery theory and the coherent state transform. The proofs combine tools from semigroup and heat kernel theory and optimal mass transportation.
keywords: deficit estimates optimal transport theory semigroup theory. transportation inequalities Logarithmic Sobolev inequalities

Year of publication

Related Authors

Related Keywords

[Back to Top]