## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- Electronic Research Announcements
- Conference Publications
- AIMS Mathematics

JMD

We compute the algebraic equation of the universal family over the Kenyon-Smillie (2, 3, 4)-Teichmüller curve, and we prove that the equation is correct in two different ways. Firstly, we prove it in a constructive way via linear conditions imposed by three special points of the Teichmüller curve. Secondly, we verify that the equation is correct by computing its associated Picard-Fuchs equation. We also notice that each point of the Teichmüller curve has a hyperflex and we see that the torsion map is a central projection from this point.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]