Nonradial blow-up solutions of sublinear elliptic equations with gradient term
Marius Ghergu Vicenţiu Rădulescu
Let $f$ be a continuous and non-decreasing function such that $f>0$ on $(0,\infty)$, $f(0)=0$, su$p_{s\geq 1} f(s)/s< \infty$ and let $p$ be a non-negative continuous function. We study the existence and nonexistence of explosive solutions to the equation $\Delta u+|\nabla u|=p(x)f(u)$ in $\Omega,$ where $\Omega$ is either a smooth bounded domain or $\Omega=\mathbb R^N$. If $\Omega$ is bounded we prove that the above problem has never a blow-up boundary solution. Since $f$ does not satisfy the Keller-Osserman growth condition at infinity, we supply in the case $\Omega=\mathbb R^N$ a necessary and sufficient condition for the existence of a positive solution that blows up at infinity.
keywords: maximum principle Explosive solution elliptic equation sublinear growth condition.
A new critical curve for the Lane-Emden system
Wenjing Chen Louis Dupaigne Marius Ghergu
We study stable positive radially symmetric solutions for the Lane-Emden system $-\Delta u=v^p$ in $\mathbb{R}^N$, $-\Delta v=u^q$ in $\mathbb{R}^N$, where $p,q\geq 1$. We obtain a new critical curve that optimally describes the existence of such solutions.
keywords: singular solutions. stable solutions critical curve radially symmetric solutions Lane-Emden system

Year of publication

Related Authors

Related Keywords

[Back to Top]