## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- Electronic Research Announcements
- Conference Publications
- AIMS Mathematics

CPAA

We introduce a new class of differential equations, retarded differential equations with functional dependence on piecewise constant argument, $RFDEPCA$ and focus on quasilinear systems. Formulation of the initial value problem, bounded solutions, periodic and almost periodic solutions, their stability are under investigation. Illustrating examples are provided.

DCDS

At the first time, Razumikhin technique is applied for differential equations with piecewise constant argument of generalized type [1, 2]. Sufficient conditions are established for stability, uniform stability and uniform asymptotic stability of the trivial solution of such equations. We also provide appropriate examples to illustrate our results.

DCDS-B

In the present study, we investigate the dynamics of shunting inhibitory cellular neural networks (SICNNs) with impulsive effects. We give a mathematical description of the chaos for the multidimensional dynamics of impulsive SICNNs, and prove its existence rigorously by taking advantage of the external inputs. The Li-Yorke definition of chaos is used in our theoretical discussions. In the considered model, the impacts satisfy the cell and shunting principles. This enriches the applications of SICNNs and makes the analysis of impulsive neural networks deeper. The technique is exceptionally useful for SICNNs with arbitrary number of cells. We make benefit of unidirectionally coupled SICNNs to exemplify our results. Moreover, the appearance of cyclic irregular behavior observed in neuroscience is numerically demonstrated for discontinuous dynamics of impulsive SICNNs.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]