## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- Electronic Research Announcements
- Conference Publications
- AIMS Mathematics

This paper investigates a two strain SIS model with diffusion, spatially heterogeneous coefficients of the reaction part and distinct diffusion rates of the separate epidemiological classes. First, it is shown that the model has bounded classical solutions. Next, it is established that the model with spatially homogeneous coefficients leads to competitive exclusion and no coexistence is possible in this case. Furthermore, it is proved that if the invasion number of strain $j$ is larger than one, then the equilibrium of strain $i$ is unstable; if, on the other hand, the invasion number of strain $j$ is smaller than one, then the equilibrium of strain $i$ is neutrally stable. In the case when all diffusion rates are equal, global results on competitive exclusion and coexistence of the strains are established. Finally, evolution of dispersal scenario is considered and it is shown that the equilibrium of the strain with the larger diffusion rate is unstable. Simulations suggest that in this case the equilibrium of the strain with the smaller diffusion rate is stable.

In this paper, a partial differential equation (PDE) model is proposed to explore the transmission dynamics of vector-borne diseases. The model includes both incubation age of the exposed hosts and infection age of the infectious hosts which describe incubation-age dependent removal rates in the latent period and the variable infectiousness in the infectious period, respectively. The reproductive number $\mathcal R_0$ is derived. By using the method of Lyapunov function, the global dynamics of the PDE model is further established, and the results show that the basic reproduction number $\mathcal R_0$ determines the transmission dynamics of vector-borne diseases: the disease-free equilibrium is globally asymptotically stable if $\mathcal R_0≤ 1$, and the endemic equilibrium is globally asymptotically stable if $\mathcal{R}_0>1$. The results suggest that an effective strategy to contain vector-borne diseases is decreasing the basic reproduction number $\mathcal{R}_0$ below one.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]