Self-orthogonal codes from orbit matrices of 2-designs
Dean Crnković Bernardo Gabriel Rodrigues Sanja Rukavina Loredana Simčić
In this paper we present a method for constructing self-orthogonal codes from orbit matrices of $2$-designs that admit an automorphism group $G$ which acts with orbit lengths $1$ and $w$, where $w$ divides $|G|$. This is a generalization of an earlier method proposed by Tonchev for constructing self-orthogonal codes from orbit matrices of $2$-designs with a fixed-point-free automorphism of prime order. As an illustration of our method we provide a classification of self-orthogonal codes obtained from the non-fixed parts of the orbit matrices of the symmetric $2$-$(56,11,2)$ designs, some symmetric designs $2$-$(71,15,3)$ (and their residual designs), and some non-symmetric $2$-designs, namely those with parameters $2$-$(15,3,1)$, $2$-$(25,4,1)$, $2$-$(37,4,1)$, and $2$-$(45,5,1)$, respectively with automorphisms of order $p$, where $p$ is an odd prime. We establish that the codes with parameters $[10,4,6]_3$ and $[11,4,6]_3$ are optimal two-weight codes. Further, we construct an optimal binary self-orthogonal $[16,5,8]$ code from the non-fixed part of the orbit matrix of the $2$-$(64,8,1)$ design with respect to an automorphism group of order four.
keywords: automorphism group. orbit matrix linear code 2-design

Year of publication

Related Authors

Related Keywords

[Back to Top]