IPI
Detection of shape deformities using Yamabe flow and Beltrami coefficients
Lok Ming Lui Tsz Wai Wong Wei Zeng Xianfeng Gu Paul M. Thompson Tony F. Chan Shing Tung Yau
Inverse Problems & Imaging 2010, 4(2): 311-333 doi: 10.3934/ipi.2010.4.311
We address the problem of detecting deformities on elastic surfaces. This is of great importance for shape analysis, with applications such as detecting abnormalities in biological shapes (e.g., brain structures). We propose an effective algorithm to detect abnormal deformations by generating quasi-conformal maps between the original and deformed surfaces. We firstly flatten the 3D surfaces conformally onto 2D rectangles using the discrete Yamabe flow and use them to compute a quasi-conformal map that matches internal features lying within the surfaces. The deformities on the elastic surface are formulated as non-conformal deformations, whereas normal deformations that preserve local geometry are formulated as conformal deformations. We then detect abnormalities by computing the Beltrami coefficient associated uniquely with the quasi-conformal map. The Beltrami coefficient is a complex-valued function defined on the surface. It describes the deviation of the deformation from conformality at each point. By considering the norm of the Beltrami coefficient, we can effectively segment the regions of abnormal changes, which are invariant under normal (non-rigid) deformations that preserve local geometry. Furthermore, by considering the argument of the Beltrami coefficient, we can capture abnormalities induced by local rotational changes. We tested the algorithm by detecting abnormalities on synthetic surfaces, 3D human face data and MRI-derived brain surfaces. Experimental results show that our algorithm can effectively detect abnormalities and capture local rotational alterations. Our method is also more effective than other existing methods, such as the isometric indicator, for locating abnormalities.
keywords: Conformal map Shape Analysis. Beltrami coefficient Surface registration Quasi-conformal map
DCDS-B
Brain anatomical feature detection by solving partial differential equations on general manifolds
Lok Ming Lui Yalin Wang Tony F. Chan Paul M. Thompson
Discrete & Continuous Dynamical Systems - B 2007, 7(3): 605-618 doi: 10.3934/dcdsb.2007.7.605
One important problem in human brain mapping research is to locate the important anatomical features. Anatomical features on the cortical surface are usually represented by landmark curves, called sulci/gyri curves. These landmark curves are important information for neuroscientists to study brain disease and to match different cortical surfaces. Manual labelling of these landmark curves is time-consuming, especially when large sets of data have to be analyzed. In this paper, we present algorithms to automatically detect and match landmark curves on cortical surfaces to get an optimized brain conformal parametrization. First, we propose an algorithm to obtain a hypothesized landmark region/curves using the Chan-Vese segmentation method, which solves a Partial Differential Equation (PDE) on a manifold with global conformal parameterization. This is done by segmentating the high mean curvature region. Second, we propose an automatic landmark curve tracing method based on the principal directions of the local Weingarten matrix. Based on the global conformal parametrization of a cortical surface, our method adjusts the landmark curves iteratively on the spherical or rectangular parameter domain of the cortical surface along its principal direction field, using umbilic points of the surface as anchors. The landmark curves can then be mapped back onto the cortical surface. Experimental results show that the landmark curves detected by our algorithm closely resemble these manually labeled curves. Next, we applied these automatically labeled landmark curves to generate an optimized conformal parametrization of the cortical surface, in the sense that homologous features across subjects are caused to lie at the same parameter locations in a conformal grid. Experimental results show that our method can effectively help in automatically matching cortical surfaces across subjects.
keywords: Conformal Parametrization Partial Differential Equations Brain Anatomical Feature Curvature. Variational problem
IPI
A conformal approach for surface inpainting
Lok Ming Lui Chengfeng Wen Xianfeng Gu
Inverse Problems & Imaging 2013, 7(3): 863-884 doi: 10.3934/ipi.2013.7.863
We address the problem of surface inpainting, which aims to fill in holes or missing regions on a Riemann surface based on its surface geometry. In practical situation, surfaces obtained from range scanners often have holes or missing regions where the 3D models are incomplete. In order to analyze the 3D shapes effectively, restoring the incomplete shape by filling in the surface holes is necessary. In this paper, we propose a novel conformal approach to inpaint surface holes on a Riemann surface based on its surface geometry. The basic idea is to represent the Riemann surface using its conformal factor and mean curvature. According to Riemann surface theory, a Riemann surface can be uniquely determined by its conformal factor and mean curvature up to a rigid motion. Given a Riemann surface $S$, its mean curvature $H$ and conformal factor $\lambda$ can be computed easily through its conformal parameterization. Conversely, given $\lambda$ and $H$, a Riemann surface can be uniquely reconstructed by solving the Gauss-Codazzi equation on the conformal parameter domain. Hence, the conformal factor and the mean curvature are two geometric quantities fully describing the surface. With this $\lambda$-$H$ representation of the surface, the problem of surface inpainting can be reduced to the problem of image inpainting of $\lambda$ and $H$ on the conformal parameter domain. The inpainting of $\lambda$ and $H$ can be done by conventional image inpainting models. Once $\lambda$ and $H$ are inpainted, a Riemann surface can be reconstructed which effectively restores the 3D surface with missing holes. Since the inpainting model is based on the geometric quantities $\lambda$ and $H$, the restored surface follows the surface geometric pattern as much as possible. We test the proposed algorithm on synthetic data, 3D human face data and MRI-derived brain surfaces. Experimental results show that our proposed method is an effective surface inpainting algorithm to fill in surface holes on an incomplete 3D models based their surface geometry.
keywords: conformal parameterization mean curvature conformal factor Gauss-Codazzi equation. Surface inpainting
IPI
Subdivision connectivity remeshing via Teichmüller extremal map
Chi Po Choi Xianfeng Gu Lok Ming Lui
Inverse Problems & Imaging 2017, 11(5): 825-855 doi: 10.3934/ipi.2017039

Curvilinear surfaces in 3D Euclidean spaces are commonly represented by triangular meshes. The structure of the triangulation is important, since it affects the accuracy and efficiency of the numerical computation on the mesh. Remeshing refers to the process of transforming an unstructured mesh to one with desirable structures, such as the subdivision connectivity. This is commonly achieved by parameterizing the surface onto a simple parameter domain, on which a structured mesh is built. The 2D structured mesh is then projected onto the surface via the parameterization. Two major tasks are involved. Firstly, an effective algorithm for parameterizing, usually conformally, surface meshes is necessary. However, for a highly irregular mesh with skinny triangles, computing a folding-free conformal parameterization is difficult. The second task is to build a structured mesh on the parameter domain that is adaptive to the area distortion of the parameterization while maintaining good shapes of triangles. This paper presents an algorithm to remesh a highly irregular mesh to a structured one with subdivision connectivity and good triangle quality. We propose an effective algorithm to obtain a conformal parameterization of a highly irregular mesh, using quasi-conformal Teichmüller theories. Conformality distortion of an initial parameterization is adjusted by a quasi-conformal map, resulting in a folding-free conformal parameterization. Next, we propose an algorithm to obtain a regular mesh with subdivision connectivity and good triangle quality on the conformal parameter domain, which is adaptive to the area distortion, through the landmark-matching Teichmüller map. A remeshed surface can then be obtained through the parameterization. Experiments have been carried out to remesh surface meshes representing real 3D geometric objects using the proposed algorithm. Results show the efficacy of the algorithm to optimize the regularity of an irregular triangulation.

keywords: Surface remeshing quasi-conformal Beltrami coefficient Beltrami's equation Teichmüller map

Year of publication

Related Authors

Related Keywords

[Back to Top]