Limit cycle bifurcations near generalized homoclinic loop in piecewise smooth differential systems
Lijun Wei Xiang Zhang
This paper deals with the maximum number of limit cycles, which can be bifurcated from periodic orbits of planar piecewise smooth Hamiltonian systems, which are located in a neighborhood of a generalized homoclinic loop with a nilpotent saddle on a switch line. First we present asymptotic expressions of the Melnikov functions near the loop. Then using these expressions we study the number of limit cycles which are bifurcated from the periodic orbits near the homoclinic loop under small perturbations. Finally we provide two concrete examples showing applications of our main results.
keywords: Piecewise smooth system limit cycle bifurcation nilpotent saddle. generalized homoclinic loop Melnikov function

Year of publication

Related Authors

Related Keywords

[Back to Top]