## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

We consider the existence of a minimizer of the Ginzburg-Landau energy

$E_\lambda(u)=\frac 1\2_[\int_{A_\delta}](|\nabla u|^2+\frac\lambda 2(1-|u|^2)^2)$

among all maps in $u\in\J$.

It turns out that, under appropriate assumptions on $\lambda=\lambda(\delta)$, existence is governed by the asymptotic behavior of the $H^1$-capacity of $A_\delta$. When the limit of the capacities is $>\pi$, we show that minimizers exist and that they are, when $\delta\to 0$, equivalent to minimizers of the same problem in the subclass of $\J$ formed by the $\mathbb{S}^1$-valued maps. This result parallels the one obtained, for a fixed domain, in [3], and reduces homogenization of the Ginzburg-Landau functional to the one of harmonic maps, already known from [2].

When the limit is $<\pi$, we prove that, for small $\delta$, the minimum is not attained, and that minimizing sequences develop vortices. In the case of a fixed domain, this was proved in [1].

*Bacillus subtilis*.

Homogenization problems were first studied in the late nineteenth century (Poisson, Maxwell, Rayleigh) and early twentieth century (Einstein). These studies were based on deep physical intuition allowing these outstanding physicists to solve several specific important problems such as calculating the effective conductivity of a two-phase conductor and the effective viscosity of suspensions. It was not until the early 1960s that homogenization began to gain a rigorous mathematical footing which enabled it to be applied to a wide variety of problem in physics and mechanics. A number of mathematical tools such as the asymptotic analysis of PDEs, variational bounds, heterogeneous multiscale method, and the probabilistic techniques of averaging were developed. Although this theory is a well-established area of mathematics, many fascinating problems remain open. Interesting examples of such problems can be found in the papers of this issue.

For more information, please click on the Full Text: "PDF" button above.

When the network deforms, each spring either preserves its length (this corresponds to a solid-like contact), or expands (this represents a broken contact). Our goal is to study distribution of solid-like contacts in the energy-minimizing configuration. We prove that under certain geometric conditions on the network, there are at least two non-stretched springs attached to each node, which means that every particle has at least two solid-like contacts. The result implies that a particle cannot loose contact with all of its neighbors. This eliminates micro-avalanches as a mechanism for structural weakening in small shear deformation.

*degree boundary condition*. As the problem is not well-posed --- minimizers do not exist, we consider a regularized problem which corresponds physically to the presence of a superconducting layer at the boundary. The study of this formulation in which minimizers now do exist, is linked to the analysis of a version of renormalized energy. As the layer width decreases to zero, we show that the vortices of any minimizer converge to a point of the boundary with maximum curvature. This appears to be the first such result for complex-valued Ginzburg-Landau type problems.

We consider a phase field model of cell motility introduced in [

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]