## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

Let $\log f'$ be an absolutely continuous and $f"/f'∈ L_{p}(S^{1}, d\ell)$ for some $p>1, $ where $\ell$ is Lebesgue measure. We show that there exists a subset of irrational numbers of unbounded type, such that for any element $\widehat{ρ}$ of this subset, the linear rotation $R_{\widehat{ρ}}$ and the shift $f_{t}=f+t\mod 1, $ $t∈ [0, 1)$ with rotation number $\widehat{ρ}, $ are absolutely continuously conjugate. We also introduce a certain Zygmund-type condition depending on a parameter $γ$, and prove that in the case $γ>\frac{1}{2}$ there exists a subset of irrational numbers of unbounded type, such that every circle diffeomorphism satisfying the corresponding Zygmund condition is absolutely continuously conjugate to the linear rotation provided its rotation number belongs to the above set. Moreover, in the case of $γ> 1, $ we show that the conjugacy is $C^{1}$-smooth.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]