American Institute of Mathematical Sciences

Journals

CPAA
In this note we study Sil'nikov saddle-focus homoclinic orbits paying particular attention to four and higher dimensions where two additional conditions are needed. We give equivalent conditions in terms of subspaces associated with the variational equation along the orbit. Then we review Rodriguez's construction of a three-dimensional system with Sil'nikov saddle-focus homoclinic orbits and finally show how to construct higher-dimensional systems with such orbits.
keywords: exponential dichotomy. homoclinic orbits invariant manifolds Sil'nikov chaos transversality
DCDS-B
We consider a singularly perturbed system with two normally hyperbolic centre manifolds. We derive one bifurcation function, the zeros of which correspond to heteroclinic connections near such a connection for the unperturbed system, and a second bifurcation function the zeros of which correspond to the vectors in the intersection of the tangent spaces to the centre-unstable and centre-stable manifolds along the heteroclinic connections.
keywords: Singular perturbation Melnikov function. homoclinic bifurcation invariant manifolds
DCDS-B
We consider a singularly perturbed system with a normally hyperbolic centre manifold. Assuming the existence of a fast homoclinic orbit to a point of the centre manifold belonging to a hyperbolic periodic solution for the slow system, we prove an old and a new result concerning the existence of solutions of the singularly perturbed system that are homoclinic to a periodic solution of the system on the centre manifold. We also give examples in dimensions greater than three of Sil'nikov [16] periodic-to-periodic homoclinic orbits.
keywords: Melnikov function Singular perturbation homoclinic bifurcation invariant manifolds Sil'nikov orbits.
DCDS-B
Isagi et al introduced a model for masting, that is, the intermittent production of flowers and fruit by trees. A tree produces flowers and fruit only when the stored energy exceeds a certain threshold value. If flowers and fruit are not produced, the stored energy increases by a certain fixed amount; if flowers and fruit are produced, the energy is depleted by an amount proportional to the excess stored energy. Thus a one-dimensional model is derived for the amount of stored energy. When the ratio of the amount of energy used for flowering and fruit production in a reproductive year to the excess amount of stored energy before that year is small, the stored energy approaches a constant value as time passes. However when this ratio is large, the amount of stored energy varies unpredictably and as the ratio increases the range of possible values for the stored energy increases also. In this article we describe this chaotic behavior precisely with complete proofs.
keywords: Masting chaos bifurcation snapback repeller. attractor
DCDS-B
A continuous map $f:[0,1]\rightarrow[0,1]$ is called an $n$-modal map if there is a partition $0=z_0 < z_1 < ... < z_n=1$ such that $f(z_{2i})=0$, $f(z_{2i+1})=1$ and, $f$ is (not necessarily strictly) monotone on each $[z_{i},z_{i+1}]$. It is well-known that such a map is topologically semi-conjugate to a piecewise linear map; however here we prove that the topological semi-conjugacy is unique for this class of maps; also our proof is constructive and yields a sequence of easily computable piecewise linear maps which converges uniformly to the semi-conjugacy. We also give equivalent conditions for the semi-conjugacy to be a conjugacy as in Parry's theorem. Related work was done by Fotiades and Boudourides and Banks, Dragan and Jones, who however only considered cases where a conjugacy exists. Banks, Dragan and Jones gave an algorithm to construct the conjugacy map but only for one-hump maps.
keywords: numerical computation. topological conjugacy Dynamical systems piecewise linear maps
DCDS
In this paper we study unimodal maps on the closed unit interval, which have a stable period 3 orbit and an unstable period 3 orbit, and give conditions under which all points in the open unit interval are either asymptotic to the stable period 3 orbit or land after a finite time on an invariant Cantor set $\Lambda$ on which the dynamics is conjugate to a subshift of finite type and is, in fact, chaotic. For the particular value of $\mu=3.839$, Devaney [3], following ideas of Smale and Williams, shows that the logistic map $f(x)=\mu x(1-x)$ has this property. In this case the stable and unstable period 3 orbits appear when $\mu=\mu_0=1+\sqrt{8}$. We use our theorem to show that the property holds for all values of $\mu>\mu_0$ for which the stable period 3 orbit persists.
keywords: chaos stability subshift of finite type. Schwarzian derivative unimodal map Period 3 hyperbolic
DCDS-B
keywords: