## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- Electronic Research Announcements
- Conference Publications
- AIMS Mathematics

In this paper, a backward problem for a time-space fractional diffusion process has been considered. For this problem, we propose to construct the initial function by minimizing data residual error in Fourier space domain with variable total variation (TV) regularizing term which can protect the edges as TV regularizing term and reduce staircasing effect. The well-posedness of this optimization problem is obtained under a very general setting. Actually, we rewrite the time-space fractional diffusion equation as an abstract fractional differential equation and deduce our results by using fractional operator semigroup theory, hence, our theoretical results can be applied to other backward problems for the differential equations with more general fractional operator. Then a modified Bregman iterative algorithm has been proposed to approximate the minimizer. The new features of this algorithm is that the regularizing term altered in each step and we need not to solve the complex Euler-Lagrange equation of variable TV regularizing term (just need to solve a simple Euler-Lagrange equation). The convergence of this algorithm and the strategy of choosing parameters are also obtained. Numerical implementations are provided to support our theoretical analysis to show the flexibility of our minimization model.

In this paper, we investigative the large time decay and stability to any given global smooth solutions of the 3D incompressible inhomogeneous MHD systems. We prove that given a solution $(a, u, B)$ of (2), the velocity field and the magnetic field decay to zero with an explicit rate, for $u$ which coincide with incompressible inhomogeneous Navier-Stokes equations ^{[1]}. In particular, we give the decay rate of higher order derivatives of $u$ and $B$ which are useful to prove our main stability result. For a large solution of (2) denoted by $(a, u, B)$, we show that a small perturbation of the initial data still generates a unique global smooth solution and the smooth solution keeps close to the reference solution $(a, u, B)$. At last, we should mention that the main results in this paper are concerned with large solutions.

In this paper, we study the explosive solutions to a class of parbolic stochastic semilinear differential equations driven by a Lévy type noise. The sufficient conditions are presented to guarantee the existence of a unique positive solution of the stochastic partial differential equation under investigation. Moreover, we show that positive solutions will blow up in finite time in mean *L ^{p}*-norm sense, provided that the initial data, the nonlinear term and the multiplicative noise satisfies some conditions. Several examples are presented to illustrate the theory. Finally, we establish a global existence theorem based on a Lyapunov functional and prove that a stochastic Allen-Cahn equation driven by Lévy noise has a global solution.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]