## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

In this paper, we study the squeezing property and finite dimensionality of cocycle attractors for non-autonomous dynamical systems (NRDS). We show that the generalized random cocycle squeezing property (RCSP) is a sufficient condition to prove a determining modes result and the finite dimensionality of invariant non-autonomous random sets, where the upper bound of the dimension is uniform for all components of the invariant set. We also prove that the RCSP can imply the pullback flattening property in uniformly convex Banach space so that could also contribute to establish the asymptotic compactness of the system. The cocycle attractor for 2D Navier-Stokes equation with additive white noise and translation bounded non-autonomous forcing is studied as an application.

*et al*and are obtained from the Navier- Stokes Equations by a global modification of the nonlinear advection term. The existence of the attractor is obtained via the flattening property, which is verified.

*Discrete and Continuous Dynamical Systems - Series B*on the asymptotic dynamics of non-autonomous systems.

For more information please click the “Full Text” above.

In this paper, for non-autonomous RDS we study cocycle attractors with autonomous attraction universes, i.e. pullback attracting some autonomous random sets, instead of non-autonomous ones. We first compare cocycle attractors with autonomous and non-autonomous attraction universes, and then for autonomous ones we establish some existence criteria and characterization. We also study for cocycle attractors the continuity of sections indexed by non-autonomous symbols to find that the upper semi-continuity is equivalent to uniform compactness of the attractor, while the lower semi-continuity is equivalent to an equi-attracting property under some conditions. Finally, we apply these theoretical results to 2D Navier-Stokes equation with additive white noise and translation bounded non-autonomous forcing.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]