## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Foundations of Data Science
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

We study the Green function for the stationary Stokes system with bounded measurable coefficients in a bounded Lipschitz domain $Ω\subset \mathbb{R}^n$, $n≥ 3$. We construct the Green function in $Ω$ under the condition $(\bf{A1})$ that weak solutions of the system enjoy interior Hölder continuity. We also prove that $(\bf{A1})$ holds, for example, when the coefficients are $\mathrm{VMO}$. Moreover, we obtain the global pointwise estimate for the Green function under the additional assumption $(\bf{A2})$ that weak solutions of Dirichlet problems are locally bounded up to the boundary of the domain. By proving a priori $L^q$-estimates for Stokes systems with $\mathrm{BMO}$ coefficients on a Reifenberg domain, we verify that $(\bf{A2})$ is satisfied when the coefficients are $\mathrm{VMO}$ and $Ω$ is a bounded $C^1$ domain.

We prove the solvability in Sobolev spaces of the conormal derivative problem for the stationary Stokes system with irregular coefficients on bounded Reifenberg flat domains. The coefficients are assumed to be merely measurable in one direction, which may differ depending on the local coordinate systems, and have small mean oscillations in the other directions. In the course of the proof, we use a local version of the Poincaré inequality on Reifenberg flat domains, the proof of which is of independent interest.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]