## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

$\frac{\partial u}{\partial t}=\text{div}\left( {{\left| \nabla {{u}^{m}} \right|}^{p-2}}\nabla {{u}^{m}} \right)|-\overrightarrow{\beta }\left( x \right)\cdot \triangledown {{u}^{q}},\ \ \ \ x\in {{\mathbb{R}}^{N}},t>0$ |

$p>1, m,q>0, N≥1$ |

$\overrightarrow{β}(x)$ |

$\mathbb{R}^{N}$ |

$\overrightarrow{β}(x)·(-x)≥0$ |

$x∈\mathbb{R}^N$ |

$τ^*>0$ |

$t < τ^*$ |

$t>τ^*$ |

$\frac{\partial u}{\partial t} =u^m $div$(|\nabla u|^{p-2}\nabla u)+u^qf(u),$

where $f(s)$ is a positive source taking logistic type as an example. A very interesting phenomenon is the presence of critical values $m_c$ and $q_c$ of the exponent $m$ and $q$. Precisely speaking, only for the case $m$<$m_c$ with $q\ge q_c$ can the family of smooth traveling wavefronts have minimal wave speed. We also discuss the regularity of smooth traveling wavefronts.

In this paper, we derive a chemotaxis model with degenerate diffusion and density-dependent chemotactic sensitivity, and we provide a more realistic description of cell migration process for its early and late stages. Different from the existing studies focusing on the case of non-degenerate diffusion, this model with degenerate diffusion causes us some essential difficulty on the boundedness estimates and the propagation behavior of its compact support. In the presence of logistic damping, for the early stage before tumour cells spread to the whole domain, we first estimate the expanding speed of tumour region as $O(t^{β})$ for $ 0 < β < \frac{1}{2}$. Then, for the late stage of cell migration, we further prove that the asymptotic profile of the original system is just its corresponding steady state. The global convergence of the original weak solution to the steady state with exponential rate $O(e^{-ct})$ for some $c>0$ is also obtained.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]