## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

*n*groups based on their susceptibilities, and the infectives are divided into

*m*groups according to their infectivities. Both the standard incidence and the bilinear incidence are considered for different diseases. We obtain explicit formulas for the reproductive number. We define the reproductive number for each subgroup. Then the reproductive number for the entire population is a weighted average of those reproductive numbers for the subgroups. The formulas for the reproductive number are derived from the local stability of the infection-free equilibrium. We show that the infection-free equilibrium is globally stable as the reproductive number is less than one for the models with the bilinear incidence or with the standard incidence but no disease-induced death. We then show that if the reproductive number is greater than one, there exists a unique endemic equilibrium for these models. For the general cases of the models with the standard incidence and death, conditions are derived to ensure the uniqueness of the endemic equilibrium. We also provide numerical examples to demonstrate that the unique endemic equilibrium is asymptotically stable if it exists.

To study the impact of media coverage on spread and control of infectious diseases, we use a susceptible-exposed-infective (SEI) model, including individuals' behavior changes in their contacts due to the influences of media coverage, and fully investigate the model dynamics. We define the basic reproductive number $\Re_0$ for the model, and show that the modeled disease dies out regardless of initial infections when $\Re_0 < 1$, and becomes uniformly persistently endemic if $\Re_0>1$. When the disease is endemic and the influence of the media coverage is less than or equal to a critical number, there exists a unique endemic equilibrium which is asymptotical stable provided $\Re_0 $ is greater than and near one. However, if $\Re_0 $ is larger than a critical number, the model can undergo Hopf bifurcation such that multiple endemic equilibria are bifurcated from the unique endemic equilibrium as the influence of the media coverage is increased to a threshold value. Using numerical simulations we obtain results on the effects of media coverage on the endemic that the media coverage may decrease the peak value of the infectives or the average number of the infectives in different cases. We show, however, that given larger $\Re_0$, the influence of the media coverage may as well result in increasing the average number of the infectives, which brings challenges to the control and prevention of infectious diseases.

For more information please click the “Full Text” above.

For the full paper, please click the "Full Text" button above.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]