## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Foundations of Data Science
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

DCDS-S

The long-time behavior of the solutions for a non-isothermal model in superfluidity is investigated. The model describes the transition between the normal and the superfluid phase in liquid

^{4}He by means of a non-linear differential system, where the concentration of the superfluid phase satisfies a non-isothermal Ginzburg-Landau equation. This system, which turns out to be consistent with thermodynamical principles and whose well-posedness has been recently proved, has been shown to admit a Lyapunov functional. This allows to prove existence of the global attractor which consists of the unstable manifold of the stationary solutions. Finally, by exploiting recent techinques of semigroups theory, we prove the existence of an exponential attractor of finite fractal dimension which contains the global attractor.
EECT

In this paper we discuss the asymptotic behavior of a doubly nonlinear problem describing the vibrations of a coupled suspension bridge. The single-span road-bed is modeled as an extensible viscoelastic beam which is simply supported at the ends. The main cable is modeled by a viscoelastic string and is connected to the road-bed by a distributed system of one-sided elastic springs. A constant axial force $p$ is applied at one end of the deck, and time-independent vertical loads are allowed to act both on the road-bed and on the suspension cable. For this general model we obtain original results, including the existence of a regular global attractor for all $p\in\mathbb{R}$.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]