Perfect radar pulse compression via unimodular fourier multipliers
Lassi Roininen Markku S. Lehtinen Petteri Piiroinen Ilkka I. Virtanen
Inverse Problems & Imaging 2014, 8(3): 831-844 doi: 10.3934/ipi.2014.8.831
We propose a novel framework for studying radar pulse compression with continuous waveforms. Our methodology is based on the recent developments of the mathematical theory of comparison of measurements. First we show that a radar measurement of a time-independent but spatially distributed radar target is rigorously more informative than another one if the modulus of the Fourier transform of the radar code is greater than or equal to the modulus of the Fourier transform of the second radar code. We then motivate the study by spreading a Gaussian pulse into a longer pulse with smaller peak power and re-compressing the spread pulse into its original form. We then review the basic concepts of the theory and pose the conditions for statistically equivalent radar experiments. We show that such experiments can be constructed by spreading the radar pulses via multiplication of their Fourier transforms by unimodular functions. Finally, we show by analytical and numerical methods some examples of the spreading and re-compression of certain simple pulses.
keywords: radar experiments comparison of measurements. Pulse compression

Year of publication

Related Authors

Related Keywords

[Back to Top]