CPAA
Well-posedness and scattering for a system of quadratic derivative nonlinear Schrödinger equations with low regularity initial data
Hiroyuki Hirayama
In the present paper, we consider the Cauchy problem of a system of quadratic derivative nonlinear Schrödinger equations which was introduced by M. Colin and T. Colin (2004) as a model of laser-plasma interaction. The local existence of the solution of the system in the Sobolev space $H^s$ for $s > d/2+3$ is proved by M. Colin and T. Colin. We prove the well-posedness of the system with low regularity initial data. For some cases, we also prove the well-posedness and the scattering at the scaling critical regularity by using $U^2$ space and $V^2$ space which are applied to prove the well-posedness and the scattering for KP-II equation at the scaling critical regularity by Hadac, Herr and Koch (2009).
keywords: Schr\"odinger equation scaling critical well-posedness Bilinear estimate Cauchy problem bounded $p$-variation.
CPAA
Well-posedness and scattering for fourth order nonlinear Schrödinger type equations at the scaling critical regularity
Hiroyuki Hirayama Mamoru Okamoto
In the present paper, we consider the Cauchy problem of fourth order nonlinear Schrödinger type equations with derivative nonlinearity. In one dimensional case, the small data global well-posedness and scattering for the fourth order nonlinear Schrödinger equation with the nonlinear term $\partial _x (\overline{u}^4)$ are shown in the scaling invariant space $\dot{H}^{-1/2}$. Furthermore, we show that the same result holds for the $d \ge 2$ and derivative polynomial type nonlinearity, for example $|\nabla | (u^m)$ with $(m-1)d \ge 4$, where $d$ denotes the space dimension.
keywords: scaling critical Cauchy problem bounded $p$-variation. Fourth order Schrödinger equation well-posedness
DCDS
Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity
Hiroyuki Hirayama Mamoru Okamoto
We consider the Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity $(i\partial _t + \Delta ) u= \pm \partial (\overline{u}^m)$ on $\mathbb{R} ^d$, $d \ge 1$, with random initial data, where $\partial$ is a first order derivative with respect to the spatial variable, for example a linear combination of $\frac{\partial}{\partial x_1} , \, \dots , \, \frac{\partial}{\partial x_d}$ or $|\nabla |= \mathcal{F}^{-1}[|\xi | \mathcal{F}]$. We prove that almost sure local in time well-posedness, small data global in time well-posedness and scattering hold in $H^s(\mathbb{R} ^d)$ with $s> \max \left( \frac{d-1}{d} s_c , \frac{s_c}{2}, s_c - \frac{d}{2(d+1)} \right)$ for $d+m \ge 5$, where $s$ is below the scaling critical regularity $s_c := \frac{d}{2}-\frac{1}{m-1}$.
keywords: Random data Cauchy problem Schrödinger equation.

Year of publication

Related Authors

Related Keywords

[Back to Top]