## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

We show that the diffusion coefficient can be uniquely and stably reconstructed from knowledge of a sufficient large number of power densities. Explicit expressions for the reconstruction of the diffusion coefficient are also provided. Such results hold for a large class of boundary conditions for the elliptic equation in the two-dimensional setting. In three dimensions, the results are proved for a more restrictive class of boundary conditions constructed by means of complex geometrical optics solutions.

We present two explicit reconstruction procedures of $\sigma$ for appropriate choices of $I$ and of traces of $u_i$ at the boundary of a domain of interest. The first procedure involves the solution of an over-determined system of ordinary differential equations and generalizes to the multi-dimensional case and to (almost) arbitrary values of $\alpha$ the results obtained in two and three dimensions in [10] and [5], respectively, in the case $\alpha=\frac12$. The second procedure consists of solving a system of linear elliptic equations, which we can prove admits a unique solution in specific situations.

The refocusing quality of the backpropagated signal is determined by the cross correlation of the two media. When the two media decorrelate, two distinct de-focusing effects are observed. The first one is a purely absorbing effect due to the loss of coherence at a fixed frequency. The second one is a phase modulation effect of the refocused signal at each frequency. This causes de-focusing of the backpropagated signal in the time domain.

Inverse transport theory concerns the reconstruction of the absorption and scattering coefficients in a transport equation from knowledge of the albedo operator, which models all possible boundary measurements. Uniqueness and stability results are well known and are typically obtained for errors of the albedo operator measured in the $L^1$ sense. We claim that such error estimates are not always very informative. For instance, arbitrarily small blurring and misalignment of detectors result in $O(1)$ errors of the albedo operator and hence in $O(1)$ error predictions on the reconstruction of the coefficients, which are not useful.

This paper revisit such stability estimates by introducing a more forgiving metric on the measurements errors, namely the $1-$Wasserstein distances, which penalize blurring or misalignment by an amount proportional to the width of the blurring kernel or to the amount of misalignment. We obtain new stability estimates in this setting.

We also consider the effect of errors, still measured in the $1-$ Wasserstein distance, on the generation of the probing source. This models blurring and misalignment in the design of (laser) probes and allows us to consider discretized sources. Under appropriate assumptions on the coefficients, we quantify the effect of such errors on the reconstructions.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]