IPI
A variational approach for the solution of the electromagnetic interior transmission problem for anisotropic media
Fioralba Cakoni Houssem Haddar
The interior transmission problem plays a basic role in the study of inverse scattering problems for inhomogeneous medium. In this paper we study the interior transmission problem for the Maxwell equations in the electromagnetic scattering problem for an anisotropic inhomogeneous object. We use a variational approach which extends the method developed in [15] to the case when the index of refraction is less than one as well as for partially coated scatterers. In addition, we also describe the structure of the transmission eigenvalues.
keywords: interior transmission problem; anisotropic media.
IPI
Integral equations for inverse problems in corrosion detection from partial Cauchy data
Fioralba Cakoni Rainer Kress
We consider the inverse problem to recover a part $\Gamma_c$ of the boundary of a simply connected planar domain $D$ from a pair of Cauchy data of a harmonic function $u$ in $D$ on the remaining part $\partial D\setminus \Gamma_c$ when $u$ satisfies a homogeneous impedance boundary condition on $\Gamma_c$. Our approach extends a method that has been suggested by Kress and Rundell [17] for recovering the interior boundary curve of a doubly connected planar domain from a pair of Cauchy data on the exterior boundary curve and is based on a system of nonlinear integral equations. As a byproduct, these integral equations can also be used for the problem to extend incomplete Cauchy data and to solve the inverse problem to recover an impedance profile on a known boundary curve. We present the mathematical foundation of the method and illustrate its feasibility by numerical examples.
keywords: Inverse boundary value problem integral equations partial boundary measurements impedance boundary condition.
IPI
New results on transmission eigenvalues
Fioralba Cakoni Drossos Gintides
We consider the interior transmission eigenvalue problem corresponding to the inverse scattering problem for an isotropic inhomogeneous medium. We first prove that transmission eigenvalues exist for media with index of refraction greater or less than one without assuming that the contrast is sufficiently large. Then we show that for an arbitrary Lipshitz domain with constant index of refraction there exists an infinite discrete set of transmission eigenvalues that accumulate at infinity. Finally, for the general case of non constant index of refraction we provide a lower and an upper bound for the first transmission eigenvalue in terms of the first transmission eigenvalue for appropriate balls with constant index of refraction.
keywords: inverse scattering problem. Interior transmission problem transmission eigenvalues inhomogeneous medium
IPI
Preface
Fioralba Cakoni Houssem Haddar Michele Piana
This special issue is dedicated to Professors David Colton and Rainer Kress in honor of their contribution and leadership in the area of direct and inverse scattering theory for more then 30 years. The papers in this special issue were solicited from the invited speakers at the International Conference on Inverse Scattering Problems organized in honor of the 65th birthdays of David Colton and Rainer Kress held in the seaside resort of Sestry Levante, Italy, May 8-10, 2008.
    As organizers of this conference and close collaborators of Professors Colton and Kress, we are very honored to have had the opportunity to facilitate this special scientific and social event. It was a particular occasion that gathered together long term colleagues, collaborators, former students and friends of Professors Colton and Kress. And now it gives us particular pleasure to be guest editors of this special issue of Inverse Problems and Imaging which is a collection of original research papers in the area of scattering theory and inverse problems. Much of the work presented here has been directly or indirectly influenced by these two scientists, offering the reader a glimpse of their significant impact in this research area.
   We would like to thank all of those who have contributed a paper for this special issue. A special thanks goes to the Editor in Chief of Inverse Problems and Imaging, Lassi Päivärinta, for supporting and facilitating this publication. We would also like to thank all the participants of the Sestri Levante Conference who made such a successful, stimulating and pleasant event possible. Last (but definitely not least!) we would like to thank the sponsors of the conference: the European Office of Aerospace Research and Development of the United States Air Force Office of Scientific Research, the University of Genova, the University of Verona, the Istituto Nazionale di Alta Matematica - Gruppo Nazionale di Calcolo Scientifico, the University of Göttingen, the University of Delaware and INRIA Center of Saclay Ile de France.
keywords:
IPI
Transmission eigenvalues for inhomogeneous media containing obstacles
Fioralba Cakoni Anne Cossonnière Houssem Haddar
We consider the interior transmission problem corresponding to the inverse scattering by an inhomogeneous (possibly anisotropic) media in which an impenetrable obstacle with Dirichlet boundary conditions is embedded. Our main focus is to understand the associated eigenvalue problem, more specifically to prove that the transmission eigenvalues form a discrete set and show that they exist. The presence of Dirichlet obstacle brings new difficulties to already complicated situation dealing with a non-selfadjoint eigenvalue problem. In this paper, we employ a variety of variational techniques under various assumptions on the index of refraction as well as the size of the Dirichlet obstacle.
keywords: Interior transmission problem inhomogeneous medium transmission eigenvalues inverse scattering problem.
IPI
Homogenization of the transmission eigenvalue problem for periodic media and application to the inverse problem
Fioralba Cakoni Houssem Haddar Isaac Harris
We consider the interior transmission problem associated with the scattering by an inhomogeneous (possibly anisotropic) highly oscillating periodic media. We show that, under appropriate assumptions, the solution of the interior transmission problem converges to the solution of a homogenized problem as the period goes to zero. Furthermore, we prove that the associated real transmission eigenvalues converge to transmission eigenvalues of the homogenized problem. Finally we show how to use the first transmission eigenvalue of the period media, which is measurable from the scattering data, to obtain information about constant effective material properties of the periodic media. The convergence results presented here are not optimal. Such results with rate of convergence involve the analysis of the boundary correction and will be subject of a forthcoming paper.
keywords: Interior transmission problem homogenization. transmission eigenvalues periodic inhomogeneous medium inverse scattering problem
IPI
The perturbation of transmission eigenvalues for inhomogeneous media in the presence of small penetrable inclusions
Fioralba Cakoni Shari Moskow Scott Rome
This paper concerns the transmission eigenvalue problem for an inhomogeneous media of compact support containing small penetrable homogeneous inclusions. Assuming that the inhomogeneous background media is known and smooth, we investigate how these small volume inclusions affect the real transmission eigenvalues. Note that for practical applications the real transmission eigenvalues are important since they can be measured from the scattering data. In particular, in addition to proving the convergence rate for the eigenvalues corresponding to the perturbed media as inclusions' volume goes to zero, we also provide the explicit first correction term in the asymptotic expansion for simple eigenvalues. The correction terms involves the eigenvalues and eigenvectors of the unperturbed known background as well as information about the location, size and refractive index of small inhomogeneities. Thus, our asymptotic formula has the potential to be used to recover information about small inclusions from a knowledge of real transmission eigenvalues.
keywords: transmission eigenvalues homogenization. inverse scattering problem Interior transmission problem periodic inhomogeneous medium

Year of publication

Related Authors

Related Keywords

[Back to Top]