## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- Electronic Research Announcements
- Conference Publications
- AIMS Mathematics

DCDS

For finitely generated groups, amenability and Følner properties are equivalent. However, contrary to a widespread idea, Kaimanovich showed that Følner condition does not imply amenability for discrete measured equivalence relations. In this paper, we exhibit two examples of $C^\infty$ foliations of closed manifolds that are Følner and non amenable with respect to a finite transverse invariant measure and a transverse invariant volume, respectively.
We also prove the equivalence between the two notions when the foliation is minimal, that is all the leaves are dense, giving a positive answer to a question of Kaimanovich. The equivalence is stated with respect to transverse invariant measures or some tangentially smooth measures.
The latter include harmonic measures, and in this case the Følner condition has to be replaced by $\eta$-Følner (where the usual volume is modified by the modular form $\eta$ of the measure).

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]