## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

$\alpha x''(t)=-x'(t)+F(x(t),t)-$sign$x(t-h),\quad\alpha=$const$>0,\ $ $h=$const$>0,$

which is a model for a scalar system with a discontinuous negative delayed feedback, and study the dynamics of oscillations with emphasis on the existence, frequency and stability of periodic oscillations. Our main conclusion is that, in the autonomous case $F(x,t)\equiv F(x)$, for $|F(x)|<1$, there are periodic solutions with different frequencies of oscillations, though only slowly-oscillating solutions are (orbitally) stable. Under extra conditions we show the uniqueness of a periodic slowly-oscillating solution. We also give a criterion for the existence of bounded oscillations in the case of unbounded function $F(x,t)$. Our approach consists basically in reducing the problem to the study of dynamics of some discrete scalar system.

*a priori*given upper bound on its derivative, which is less than $1$. Sufficient and explicit conditions are derived that guarantee the exponential stability. Moreover the decay rate can be explicitly computed if the data are given.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]