## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

DCDS-S

A one-dimensional model for a shape memory alloy is proposed. It provides a simplified description of the pseudo-elastic regime, where stress-induced transitions from austenitic to oriented martensitic phases occurs. The stress-strain evolution is ruled by a bilinear rate-independent o.d.e. which also accounts for the fine structure of minor hysteresis loops and applies to the case of single crystals only. The temperature enters the model as a parameter through the yield limit $y$.Above the critical temperature $\theta_A^*$, the austenite-martensite phase transformations are described by a Ginzburg-Landau theory involving an order parameter $φ$, which is related to the anelastic deformation. As usual, the basic ingredient is the Gibbs free energy, $\zeta$, which is a function of the order parameter, the stress and the temperature. Unlike other approaches, the expression of this thermodynamic potential
is derived rather then assumed, here. The explicit expressions of the minimum and maximum free energies are obtained by exploiting the Clausius-Duhem inequality, which ensures the compatibility with thermodynamics, and the complete controllability of the system. This allows us to highlight the role of the Ginzburg-Landau equation when phase transitions in materials with hysteresis are involved.

EECT

In this paper we discuss the asymptotic behavior of a doubly nonlinear problem describing the vibrations of a coupled suspension bridge. The single-span road-bed is modeled as an extensible viscoelastic beam which is simply supported at the ends. The main cable is modeled by a viscoelastic string and is connected to the road-bed by a distributed system of one-sided elastic springs. A constant axial force $p$ is applied at one end of the deck, and time-independent vertical loads are allowed to act both on the road-bed and on the suspension cable. For this general model we obtain original results, including the existence of a regular global attractor for all $p\in\mathbb{R}$.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]