## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- Electronic Research Announcements
- Conference Publications
- AIMS Mathematics

*without*closure of higher moments.

*integrates*in inverse scale space a succession of refined, recursive 'slices' of the image, which are balanced by a typical curvature term at the finer scale. Although the original motivation came from a variational approach, the resulting IDE can be extended using standard techniques from PDE-based image processing. We use filtering, edge preserving and tangential smoothing to yield a family of modified IDE models with applications to image denoising and image deblurring problems. The IDE models depend on a user scaling function which is shown to dictate the BV

^{∗}properties of the residual error. Numerical experiments demonstrate application of the IDE approach to denoising and deblurring.

*entropy-conservative*schemes. It yields precise characterizations of entropy stability which is enforced in rarefactions while keeping sharp resolution of shocks.

We demonstrate this approach with a host of second-- and higher--order accurate schemes, ranging from scalar examples to the systems of shallow-water, Euler and Navier-Stokes equations. We present a family of energy conservative schemes for the shallow-water equations with a well-balanced description of their steady-states. Numerical experiments provide a remarkable evidence for the different roles of viscosity and heat conduction in forming sharp monotone profiles in Euler equations, and we conclude with the computation of entropic measure-valued solutions based on the class of so-called TeCNO schemes --- arbitrarily high-order accurate, non-oscillatory and entropy stable schemes for systems of conservation laws.

We continue our study of one-dimensional class of Euler equations, introduced in [

In this paper we quantify the large-time behavior of such systems in terms of *fast flocking*, for two prototypical sub-classes of kernels: bounded positive $φ$'s, and singular $φ(r) = r^{-(1+α)}$ of order $α∈ [1, 2)$ associated with the action of the fractional Laplacian ${\mathcal L}_φ=-(-\partial_{xx})^{α/2}$. Specifically, we prove fast velocity alignment as the velocity $u(·, t)$ approaches a constant state, $u \to \bar{u}$, with exponentially decaying slope and curvature bounds $|{u_x}( \cdot ,t){|_\infty } + |{u_{xx}}( \cdot ,t){|_\infty }\lesssim{e^{ - \delta t}}$. The alignment is accompanied by exponentially fast flocking of the density towards a fixed traveling state $ρ(·, t) -{ρ_{∞}}(x -\bar{u} t) \to 0$.

For more information please click the “Full Text” above.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]